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ABSTRACT

Motivation: The accumulation of genome sequences will only

accelerate in the coming years. We aim to use this abundance of

data to improve the quality of genomic alignments and devise amethod

which is capable of detecting regions evolving under weak or no evolu-

tionary constraints.

Results:WedescribeagenomealignmentprogramAuberGene,which

explores the idea of transitivity of local alignments. Assessment of

the program was done based on a 2Mbp genomic region containing

the CFTR gene of 13 species. In this region, we can identify 53% of

human sequence sharing common ancestry with mouse, as compared

with 44% found using the usual pairwise alignment. Between human

and tetraodon 93 orthologous exons are found, as compared with

77 detected by the pairwise human-tetraodon comparison.

AuberGene allows the user to (1) identify distant, previously undetec-

ted, conserved orthogonal regions such asORFs or regulatory regions;

(2) identify neutrally evolving regions in related species which are often

overlooked by other alignment programs; (3) recognize false ortho-

logous genomic regions. The increased sensitivity of the method is

not obtained at the cost of reduced specificity. Our results suggest

that, over the CFTR region, human shares 10% more sequence with

mouse than previously thought (�50%, instead of 40% found with the

pairwise alignment).

Availability: The source code and tracks for UCSC Genome Browser

generated with the program are available from http://www.ibivu.cs.vu.

nl/programs/aubergenewww.

Contact: heringa@cs.vu.nl

1 INTRODUCTION

The rapid rate of accumulation of entire genomic sequences has

fueled the development of the comparative genomics field. With

more data at hand the results of analysis are more sensitive to

weaker conservation signals and statistically sound at the same

time. However, with even more genomic sequences nearing

completion, the need for fast, reliable and automatic tools for align-

ment, with the emphasis on specificity and permitting alignment of

neutrally evolving regions, is growing (Schwartz et al., 2003). In
this paper we use intermediate sequences in order to be able to

delineate significantly divergent regions of homologous sequences.

This idea has been applied previously in the area of sequence

analysis, in such diverse tasks as homology detection among

proteins (Park et al., 1997), multiple alignment (Morgenstern

et al., 1998; Notredame et al., 2000; Ye and Huang, 2005), repeat

detection (Szklarczyk and Heringa, 2004) and identification of

weak-signal protein sequence motifs (Heger et al., 2004). It

has been especially successful in inferring distant relationships

where homology cannot be detected by simple, direct pairwise

comparison.

Here we employ transitivity for the analysis of genomic

sequences, concentrating on pairwise local alignments. Transitivity

enables us to align regions that are difficult to align (in particular

regions that are distant) by identifying orthologous fragments such

as exons or regulatory elements. The increase in quality of pairwise

alignment extends beyond the ability to cover longer evolutionary

distances or to find more matches between sequences. It also allows

the identification of false-positive, non-homologous alignments

which can be corrected based on the new information provided

by intermediate sequences. Alignments that are confirmed by

matches involving different intermediate genomes suggest the func-

tional importance of such genomic fragments [as it is observed that

regions conserved in multiple species often correlate with functional

elements (Kellis et al., 2003)].

2 ALGORITHM

We start the procedure by calculating all-against-all pairwise

genome alignments. This is done by running genome alignment

software such as BLASTZ (Schwartz et al., 2003). We refer to

these alignments as direct alignments.

We note that an alignment between a pair of sequences (e.g.

human and fugu, Fig. 1a) can also be produced using a third sequence

(e.g. chicken) as a result of combining the human–chicken and

chicken–fugu alignments. The alignment obtained in this transitive

step comprises matches between residues of human and fugu which

were matched with the same chicken residue (Fig. 1b). This process

results in the transitive pairwise alignment human–chicken–fugu

(Notredame et al., 2000; Szklarczyk and Heringa, 2004). In this

case, even though three sequences and two alignments were used

for the process, the result is a pairwise alignment.

Using a set of N genomes, N � 2 transitive alignments can be

formed for a given pair of genome sequences. To fully see the

benefits of the whole set of alignments which we have at hand at

this point, we merge them into a single alignment (Fig. 2). When

merging, for each match we keep track of the number of transitive

alignments which include this match—a match between certain

residues can be indicated by many transitive alignments indepen-

dently. The result of the merging process, the collective alignment,

contains matches with weights ranging from 1 (when there was only�To whom correspondence should be addressed.
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one transitive alignment with this match) to N � 2 (in which the

whole set of transitive alignments supports the match). The weight

reflects our confidence in the match, normally expressed as the

alignment score. The collective alignment allows us to (1) increase

the coverage of the sequence (sensitivity) and thereby extend homo-

logy detection to regions not represented in the direct alignment; (2)

confirm matches (gaining confidence) in the direct alignment for

those residues consistently matched in the transitive alignments and

(3) contradict (or reduce the importance of) direct matches due to

inconsistent matching in the various transitive alignments. The

latter can be used to decide whether the direct alignment indicates

a true homology, or results from an artifact of the method used to

produce it (specificity).

Alignments are internally represented as gapless high-scoring

segments. This approach is favored over storing alignments as a

set of matches, which could, for long genomic alignments, lead to

the increase of space/time complexity. Our algorithm constructs the

collective alignment in three steps.

Step 1. Segment decomposition. Gapless segments which over-

lap partially with other segments are parsed, such that only fully

overlapping or non-overlapping segments are produced. Initially,

we merge all the transitive alignments and the direct one together.

Therefore some of the gapless segments may begin or end inside

another segment, and it is likely that a number of residues from one

sequence will have multiple matches with residues in the other

sequence (Fig. 3a). We adopt a depth-first search strategy to

parse the segments. First, we mark all residues within each of

the segments that are at a position where another segment begins

or ends. For each of the thus marked residues we then follow its

links to matched positions in the other sequence and mark those as

well. We recursively follow the links going out of these newly

marked residues and mark the corresponding residues until no

new unmarked positions can be found anymore. Upon termination

of the procedure, we split each of the initial segments at marked

positions to create new uninterrupted segments, that is, with marks

appearing at the beginning or end only. This scenario results in

decomposition of partially overlapping segments into fully over-

lapping or non-overlapping segments. Note that two partially over-

lapping segments can lead to an arbitrary number of fully

overlapping ones (Fig. 3b).

Step 2. Constructing a weighted bipartite graph from transitive
alignments. For this parsed genome alignment, we create

weighted edges between each segment in either genome, where

the weight corresponds to the number of alignments (direct and

transitive) that support the alignment of the segment pair. The

higher the integer weight, the more transitive alignments support

the segment matching, which is a strong indication of orthology.

Step 3. Generating the collective alignment. After a genome

alignment is converted to a weighted bipartite graph, the final align-

ment is determined by running the Hopcroft–Karp bipartite

max-cardinality matching algorithm (Hopcroft and Karp, 1973)

(implemented after Cormen et al., 2001). This algorithm selects

the maximal subset of the edges that do not share a common

node. This corresponds to choosing segments of the merged align-

ment in such a way that no residue is covered by more than one

match, while at the same time the number of matches and thereby

the coverage of the alignment is maximized. Our method provides

an option to skip this step of the algorithm that can be used if the

user wishes to retain alignments with multiple matched segments.

3 RESULTS

3.1 Sensitivity assessment

In our analysis we used the data from the greater CFTR region

containing the gene encoding the cystic fibrosis transmembrane

conductance regulator and nine other genes [1.8Mbp on human

chromosome 7, around 1.4Mbp for the other mammals and around

0.3Mbp for the non-mammalian species (Thomas et al., 2003)]. The
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Fig. 1. Calculating the transitive human–chicken–fugu alignment. (a) Two

direct alignments: human–chicken and chicken–fugu and (b) the transitive

human–fugu alignment, based on the two alignments with chicken. Only

residues that match the same chicken residue are matched in the transitive

alignment.
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Fig. 2. Calculating the collective human–fugu alignment using two inter-

mediate sequences. (a) Direct alignments with chicken and cat, (b) transitive

human–fugu alignments and (c) the collective alignment: created by combin-

ing the two transitive alignments. The middle region is matched inconsis-

tently, and the region denoted with a star is confirmed both directly and

transitively.
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Fig. 3. Breaking up partially overlapping segments into non- or fully over-

lapping ones. (a) A typical case and (b) two partially overlapping segments

lead to a large number of fully overlapping segments.
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region has been sequenced in 13 different species: baboon, cat,

chicken, chimp, cow, dog, fugu, human, mouse, pig, rat, tetraodon

(tetra in figures) and zebrafish (zfish). The phylogenetic tree for the

mammalian organisms is shown in Figure 4 where it is apparent that

the rat and mouse genomes evolve the fastest.The sequences were

aligned all-against-all (Thomas et al., 2003) using BLASTZ

(Schwartz et al., 2003). We found that for most organisms, trans-

itivity leads to a significantly higher fraction of sequence aligned

with human. The increase of the length of the alignment (later we

will argue that these are not spurious matches) varies between

1.5 kbp (zebrafish) and 140 kbp (rat and mouse), i.e. between 0.5

and 10% of the human sequence in this region (Fig. 5a). Interest-

ingly, we observed that most new putative orthologous nucleotides

are found between human and rodents. In general, the fraction of

aligned sequence decreases with evolutionary distance with the

exception of rat and mouse. Rodents, even though considered evolu-

tionary closer to human than other non-primate mammals consi-

dered here (Murphy et al., 2001, Fig. 4), have a lower fraction of

sequence aligned with human than cat, cow, dog and pig (Thomas

et al., 2003, Fig. 5a). The gap between rodents and other mammals

is partially bridged by the use of transitive alignments, suggesting

that the method performs very effectively at finding homologous

fragments of sequence for genomes suspected to evolve at a par-

ticularly high rate (Mouse Genome Sequencing Consortim, 2002,

Fig. 4). We found that new matches occur more frequently in

intronic regions than in regions between genes. For the sequences

analyzed, the transitive matches are found in introns almost twice as

often (after discounting for the length difference) as the (in prin-

ciple) untranscribed regions.

Overall, �44% of the human greater CFTR region is covered by

the direct alignment with mouse, which is in close agreement with

the whole genome alignment covering 40% of the 2.9Gb human

sequence (Mouse Genome Sequencing Consortium, 2002). In the

paper announcing the publication of the mouse genome authors

report alignment of the most of orthologous sequence, stating

that the rest is likely to have been deleted in one or both genomes.

Our method increases the length of the aligned sequence by

10 percentage points, to 53% in the CFTR region (Fig. 5a).

In order to explain which species predominantly contribute to the

increased coverage of human–mouse alignment, new residues

covered with matches were counted separately for each of the inter-

mediate sequence (Fig. 6). The second rodent, rat, is the most

helpful in enriching the human–mouse alignment, followed by

the other mammals. We observed about one-third increase in align-

ment length for the species most divergent from human (Fig. 7), a

consistent increase in relative alignment size for rodents (>20%)

and 8–9% for other non-primate mammals investigated.

In exonic regions, the most notable increase in sensitivity is

observed, not surprisingly, for very distant species: fugu and

0.05 substitution per site
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Fig. 4. Phylogenetic tree for the mammalian species used in this study,

adapted from Thomas et al. (2003).
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Fig. 5. Coverage of human sequence using direct (black) and transitive align-

ments (hatched) of the greater CFTR region. Each bar represents the number

of nucleotides aligned between human and other species (horizontal axis).

(a) Percentage coverage over the greater CFTR region and (b) percentage

coverage over 125 human exons in this region (33 kbp in total).
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Fig. 6. Number of orthologous residues in human–mouse alignment deter-

mined by using individual intermediate genomic sequences. The total nucleo-

tide coverage of the humangenomic sequence in the human–mouse collective

alignment exceeds 800 kbp.
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tetraodon (Fig. 5b). No new matches for exons were found using

primates. This is most likely due to the fact that all orthologous

exons were already indicated by the pairwise alignment, and the

only reason that the alignment does not cover all of the coding

sequence is exon-loss in one of the lineages. There is a consistent

increase in the coverage of human exons in alignments with non-

primate mammals, with the increase being highest for rodents, as

expected from overall coverage of the sequence (Fig. 5a).

To verify that transitive alignments are able to cover larger evolu-

tionary distances (which would mean that the method is sensitive for

homology of distant, but functional regions), we searched for ortho-

logous exons of the greater CFTR region between two very diver-

gent sequences: human and tetraodon. Given such a distant

sequence comparison, only 23% of the the whole collective align-

ment is outside of boundaries of human exons. Despite that, out of

125 human exons in the region [as annotated in GenBank

(Benson et al., 2004), release February 2004], the pairwise align-

ment finds 77 orthologous exons. The collective alignment with

11 intermediate genomes increases the number of detected ortho-

logous human exons to 93 (Table 1).

3.2 Specificity assessment

To assess specificity we reversed (without complementing) all

genomic sequences, and used them as an intermediate for construct-

ing the collective alignment of human and mouse sequences (there-

fore creating transitive alignments such as human–dogR–mouse). In

this case, the reversed sequence acts as a randomized sequence but

preserves the local composition of nucleotides. Alignment with

such a reversed genome approximates (although slightly under-

estimating) the quantity of spurious matches (for details see

Schwartz et al., 2003). Merging all such transitive alignments we

created the collective alignment which covered only 0.03% of the

human sequence. This demonstrates the high specificity of the

method suggesting that the collective alignment we build is not

likely to contain many spurious matches.

Knowing that our method does not lead to many false matches,

we verified the direct human–mouse alignment using the transitive

alignments. The collective alignment matched 11% of human nuc-

leotides differently than in the direct alignment (this translates to

200 kbp in the region considered, covering the human genome

evenly). For 1% of the direct human–mouse alignment, we find

indications to correct and re-align human residues (where at least

three transitive alignments consistently suggest a different match).

As an example, we show the conservation of the sequence in the

neighborhood of the last exon in the CAV1 gene is shown in

Figure 8. In contrast to the identity levels, the coding region receives

the maximal confidence weight of 12 (i.e. the region is consistently

aligned with mouse for all the transitive alignments). The UTR of

this gene, with the signals specifying the way RNA is to be used and

the rate of poly-A shortening (Alberts et al., 2002) is more con-

sistently aligned in the collective alignment. A high confidence

weight of 8 is visible in the intronic region 100 nt upstream

from the exon, suggesting a much greater functional role than

implied by identity levels in the direct alignment alone.

Even though we use transitive alignments to extend the direct

one, they should, at least partially, overlap. The overlap with the

direct alignment serves both as confirmation of its validity, and as

an indication that transitive alignments do not produce spurious

matches (with most of the transitive alignment expected to overlap

with the direct, Table 2). Not surprisingly, different intermediate

sequences support the direct alignment in varying degree: starting

from as low as 1% (zebrafish) up to 78% (baboon), the lower

percentages resulting from short transitive alignments. However,

the percentage of matches of transitive alignments overlapping with

the direct one is very high, exceeding 73% for all the organisms.

The programAuberGene is available for download at http://www.

ibivu.cs.vu.nl/programs/aubergenewww, together with the informa-

tion how to use it. The program allows the user to

� create transitive alignments

� merge alignments, allowing for multiple matches with a single

nucleotide, and assign weights corresponding to the number of

overlapping matches.

� make the collective alignment (with at most one match per

nucleotide)
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Fig. 7. Increase in length of collective alignments relative to the length of the

corresponding direct alignments.

Table 1. Additional 16 orthologous human exons detected in the collective

human–tetraodon alignment.

Gene name Exon position

start end

CAV2 329316 329465

MET 570386 570559

587172 587308

592584 592802

599179 599325

604415 604645

WNT2 1152441 1152823

GASZ 1251771 1251893

CFTR 1309629 1309681

1338568 1338676

1424464 1424592

1444147 1444247

CORTBP2 1549038 1549170

1557623 1557801

1575365 1575464

1609975 1610125

The exon positions are given relative to the start of the greater CFTR region.
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� report conflicting matches between alignments

� filter the alignment, restricting it to a specific region or a match

weight

AuberGene creates a collective human–mouse alignment of

almost 2Mbp region for 11 intermediate genomes in <4 min on

a 1.6GHz Pentium III processor, using 100MB of memory at peak.

Memory complexity of the program is linear and depends on the

number of gapless segments in alignments (this tends to be a much

lower number than the sequence length). The upper bounds on time

complexity are set by a sorting procedure of n gapless segments in

O(n log n) and by the Hopcroft–Karp bipartite max-cardinality

matching algorithm. The latter runs in Oð
ffiffiffiffi

V
p

EÞ time, where V
and E are the numbers of vertices and edges in the bipartite

graph, respectively. Because we run this procedure for each con-

nected graph and these graphs are generally small, there is no

significant impact on the program performance.

On the web page we made available so-called ‘custom tracks’

visualizing the greater CFTR region using UCSC Genome Browser

(Karolchik et al. 2003, http://genome.ucsc.edu). These tracks show

the coverage of human sequence with matches in human–mouse

alignments. Coverage for both collective alignment (where next to

11 transitive the direct alignment is incorporated) and, for compar-

ison, direct alignment tracks is visible. Another track represents

fragments of sequence (visible as features in the browser) where

the direct alignment is inconsistent with the collective one. Each

feature is annotated with a number ranging from 1 to 12, i.e. the

number of transitive alignments supporting the match.

4 DISCUSSION

In this work we show that the concept of transitivity can be applied

effectively to genome alignments, which provides the opportunity

to align genomes with increased sensitivity. Because the focus of

genome alignment methods is on determining orthology, transitivity

helps to find functional regions under selection pressure in distant

species as well as neutrally evolving regions in closer related

species.

Having a method to extend and validate alignments we do not

have to put so much emphasis on the scoring method (Vingron and

Waterman, 1994) and alignment strategies (Zhang et al., 1999).
This feature is very important since genome alignment strategies,

having sacrificed generality for speed, use many heuristics to

rapidly process large amounts of data. Genome alignment tools

are designed for efficient comparison of sequences at a certain

evolutionary distance (such as between human and mouse,

Miller, 2001), and are therefore suboptimal for more divergent

genomes. Not only these heuristics, but also some intrinsic prop-

erties of the local alignment technique lead to potential flaws

(Arslan et al., 2001), for example, the inclusion of an arbitrary

poor internal segment in an alignment (Zhang et al., 1999).
When running AuberGene, the user normally does not need to pay

particular attention to which sequences are used as

intermediates—in fact the greater the number of sequences, the

higher the coverage. Nonetheless, if intermediate sequences are

included that are very closely related to one or both of the sequences

considered, due to the inherent support by these sequences the

weights of the original direct alignment will tend to increase.

This might lead to reduced additional information and will make

the program run longer.

Often, genomic alignments do not have a 1-to-1 relationship at

the residue level, either due to segmental duplications or spurious

hits, leaving alignment tools with no option but to provide output

with multiple matches. Indeed, experience with genome alignments
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Table 2. Overlap between direct (d) and transitive (t) human–mouse

alignments

Intermediate species j d \ t j

/

j d j% j d \ t j

/

j t j%

baboon 78 85

chimp 71 94

rat 70 76

cat 51 73

cow 45 73

dog 42 73

pig 38 74

chicken 2 83

fugu 2 94

tetra 2 94

zfish 1 92

The first column lists organisms used as an intermediate to construct the transitive

human–mouse alignment t. The second column indicates the fraction of corresponding

matches in the direct alignment: the matches identical in the two alignments are denoted

by d\ t and j d j denotes the number ofmatches in the direct alignment. The third column

gives the fraction of corresponding matches in the transitive alignment.
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suggests that the initial alignment should be fairly inclusive, and

decisions about processing it should be left to downstream tools

(Schwartz et al., 2003). We have presented such a downstream tool

here, and have shown that by including additional information from

other species we can improve sensitivity considerably and produce

an alignment that is more accurate and less ambiguous.
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